Concise Machine Learning by Jonathan Richard Shewchuk

Concise Machine Learning by Jonathan Richard Shewchuk

简介:

本报告包含加州大学伯克利分校机器学习入门课程的讲义。它涵盖了许多分类和回归方法,以及几种聚类和降维方法。它之所以简洁,是因为没有包含任何不能在一个学期的讲座中写或说的内容(白板讲座,几乎没有幻灯片!),而且主题选择仅限于少数特别有用、流行的算法。

英文简介:

This report contains lecture notes for UC Berkeley’s introductory class on Machine Learning. It covers many methods for classification and regression, and several methods for clustering and dimensionality reduction. It is concise because nothing is included that cannot be written or spoken in a single semester’s lectures (with whiteboard lectures and almost no slides!) and because the choice of topics is limited to a small selection of particularly useful, popular algorithms.

书名
Concise Machine Learning by Jonathan Richard Shewchuk
语言
英语
年份
2025
页数
174页
大小
41.02 MB
标签
  • 机器学习
  • 下载
    pdf iconConcise Machine Learning by Jonathan Richard Shewchuk.pdf
    密码
    65536

    最后更新:2025-04-12 23:58:19

    ←The seL4 Microkernel An Introduction

    →Understanding R1-Zero-Like Training: A Critical Perspective