Bayesian Computational Methods

Bayesian Computational Methods

简介:

该专题介绍了贝叶斯统计中遇到的最标准的计算挑战,主要集中在混合估计和模型选择问题上,然后将这些问题与计算解决方案联系起来。当然,这只是对与贝叶斯计算相关的问题和解决方案的简要介绍。它旨在帮助初学者贝叶斯从业者成为中级建模者。它使用PyMC3,Tensorflow概率,ArviZ和其他库的实践方法,重点是应用统计学的实践,并参考基础数学理论。

英文简介:

This monograpg presents the most standard computational challenges met in Bayesian Statistics, focussing primarily on mixture estimation and on model choice issues, and then relate these problems with computational solutions. Of course, this is only a terse introduction to the problems and solutions related to Bayesian computations.

It aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.

书名
Bayesian Computational Methods
译名
贝叶斯计算方法
语言
英语
年份
2010
页数
59页
大小
3.65 MB
标签
  • Bayesian Method
  • 机器学习
  • 下载
    pdf iconBayesian Computational Methods.pdf
    密码
    65536

    最后更新:2025-04-12 23:58:06

    ←Automated Machine Learning: Methods, Systems, Challenges

    →An Introduction to Bayesian Thinking