Automated Machine Learning: Methods, Systems, Challenges

Automated Machine Learning: Methods, Systems, Challenges

简介:

这本开放获取的书首次全面概述了自动机器学习 (AutoML) 中的一般方法,收集了基于这些方法的现有系统的描述,并讨论了AutoML系统的第一系列国际挑战。最近商业ML应用的成功和该领域的快速增长对现成的ML方法产生了很高的需求,这些方法可以在没有专业知识的情况下轻松使用。然而,最近的许多机器学习成功都依赖于人类专家,他们手动选择合适的ML架构 (深度学习架构或更传统的ML工作流) 及其超参数。为了克服这个问题,AutoML领域的目标是基于优化和机器学习本身的原则,逐步实现机器学习的自动化。本书为研究人员和高级学生提供了进入这个快速发展领域的切入点,并为旨在在工作中使用AutoML的从业人员提供了参考。

英文简介:

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems.

The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself.

This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

书名
Automated Machine Learning: Methods, Systems, Challenges
译名
自动化机器学习:方法、系统、挑战
语言
英语
年份
2019
页数
223页
大小
6.20 MB
标签
  • 机器学习
  • 下载
    pdf iconAutomated Machine Learning: Methods, Systems, Challenges.pdf
    密码
    65536

    最后更新:2025-04-12 23:58:06

    ←C++ Neural Networks and Fuzzy Logic

    →Bayesian Computational Methods