Distributional Reinforcement Learning

简介:
分布式强化学习的第一个综合指南,为从概率角度思考决策提供了一种新的数学形式主义。分布式强化学习是一种新的数学形式主义,用于思考决策。除了强化学习和期望值的常见方法之外,它还关注作为代理选择的结果而获得的总回报或回报-特别是从概率的角度来看,这种回报是如何表现的。
英文简介:
The first comprehensive guide to distributional reinforcement learning, providing a new mathematical formalism for thinking about decisions from a probabilistic perspective.
Distributional reinforcement learning is a new mathematical formalism for thinking about decisions. Going beyond the common approach to reinforcement learning and expected values, it focuses on the total reward or return obtained as a consequence of an agent's choices—specifically, how this return behaves from a probabilistic perspective.
- 书名
- Distributional Reinforcement Learning
- 译名
- 分布式强化学习
- 语言
- 英语
- 年份
- 2023
- 页数
- 385页
- 大小
- 8.05 MB
- 标签
- 强化学习
- 机器学习
- 下载
Distributional Reinforcement Learning.pdf
- 密码
- 65536
最后更新:2025-04-12 23:55:04