Support Vector Machines Succinctly

Support Vector Machines Succinctly

简介:

在机器学习中,支持向量机 (svm,也称为支持向量网络) 是具有相关学习算法的监督学习模型,这些学习算法分析用于分类和回归分析的数据。支持向量机 (svm) 是一些性能最好的现成监督机器学习算法。给定一组训练示例,每个示例被标记为属于两个类别中的一个或另一个,SVM训练算法构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器。

英文简介:

In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.

Support Vector Machines (SVMs) are some of the most performant off-the-shelf, supervised machine-learning algorithms. Given a set of training examples, each marked as belonging to one or the other of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier.

书名
Support Vector Machines Succinctly
译名
简洁的支持向量机
语言
英语
年份
2017
页数
116页
大小
17.19 MB
标签
  • 简明教程
  • 下载
    pdf iconSupport Vector Machines Succinctly.pdf
    密码
    65536

    最后更新:2025-04-12 23:54:36

    ←Boosting: Foundations and Algorithms

    →Machine Learning for Designers