Deep Learning: Technical Introduction

简介:
本书以一种技术的方式,尽管希望以教学的方式介绍了神经网络架构的三种最常见形式: 前馈,卷积和递归。对于每个网络,详细介绍了它们的基本构建块。然后完全导出反向传播算法的正向传递和更新规则。它可能是深度学习初学者的第一站,因为它包含许多具体的,易于遵循的示例以及相应的教程视频和代码笔记本。
深度学习背后的科学构建和训练自己的神经网络隐私概念,包括联合学习继续追求深度学习的技巧
英文简介:
This book presents in a technical though hopefully pedagogical way the three most common forms of neural network architectures: Feedforward, Convolutional and Recurrent. For each network, their fundamental building blocks are detailed. The forward pass and the update rules for the backpropagation algorithm are then derived in full.
It could be the first stop for deep learning beginners, as it contains lots of concrete, easy-to-follow examples with corresponding tutorial videos and code notebooks.
The science behind deep learningBuilding and training your own neural networksPrivacy concepts, including federated learningTips for continuing your pursuit of deep learning
- 书名
- Deep Learning: Technical Introduction
- 译名
- 深度学习:技术介绍
- 语言
- 英语
- 年份
- 2017
- 页数
- 106页
- 大小
- 2.16 MB
- 标签
- 深度学习
- 机器学习
- 下载
Deep Learning: Technical Introduction.pdf
- 密码
- 65536
最后更新:2025-04-12 23:54:36
←Introducing Microsoft Azure HDInsight - Technical Overview
→Introduction to CNTK (Microsoft Cognitive Toolkit) Succinctly