Algebraic Topology

Algebraic Topology

简介:

在大多数主要大学中,一年级研究生的三到四门基本数学课程之一是代数拓扑。这个介绍性文本适合在主题课程中使用或用于自学,具有广泛的覆盖面和可读的阐述,有许多例子和练习。四个主要章节介绍了基础知识: 基本群和覆盖空间,同源性和同调,高级同伦群和一般同伦理论。

作者强调主题的几何方面,这有助于学生获得直觉。一个独特的功能是由于时间限制而包含了许多可选主题,这些主题通常不是第一门课程的一部分: Bockstein和转移同态,正逆极限,H空间和Hopf代数,Brown可表现性定理,James简化乘积,dold-thom定理,斯廷罗德正方形和权力。这本代数拓扑入门教科书适合在课程中使用或自学,具有广泛的主题覆盖面和可读的阐述,有许多例子和练习。四个主要章节介绍了该主题的基本材料: 基本群和覆盖空间,同源性和同调性,高级同伦群和一般同伦理论。这本书的一个独特之处是包含了许多难以找到基本论述的可选主题。研究人员和学生都将欢迎本书的这一方面。

英文简介:

In most major universities one of the three or four basic first-year graduate mathematics courses is algebraic topology. This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally.

The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.

This introductory textbook in algebraic topology is suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises. The four main chapters present the basic material of the subject: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally.

A unique feature of the book is the inclusion of many optional topics for which elementary expositions are hard to find. Researchers and students alike will welcome this aspect of the book.

书名
Algebraic Topology
译名
代数拓扑
语言
英语
年份
2002
页数
560页
大小
7.75 MB
标签
  • 代数
  • 数学
  • 下载
    pdf iconAlgebraic Topology.pdf
    密码
    65536

    最后更新:2025-04-12 23:54:36

    ←What is and What will be: Integrating Spirituality and Science

    →Topology of Numbers