Introduction to Statistics and Data Analysis for Physicists

简介:
有大量优秀的统计书籍。尽管如此,我们认为用另一本教科书来补充它们是合理的,重点是核和粒子物理学的现代应用。为此,我们在文中包括了大量相关的例子和数字。我们不太强调数学基础,而是吸引读者的直觉。
没有模拟技术,现代实验中的数据分析是不可想象的。我们将详细讨论如何将蒙特卡洛模拟应用于参数估计,反卷积,拟合优度测试。我们还概述了人工神经网络,bootstrap方法,增强决策树和支持向量机等现代发展。
似然是统计分析的核心概念,其基础是似然原理。我们比通常在教科书中更详细地讨论了这个概念,并尽可能仅根据似然函数来处理推理问题,这在大多数核和粒子物理界都是常见的。以这种方式,一致地处理离散和连续参数的点估计和区间估计、误差传播、组合结果、推断。我们在似然函数不足以得出合理结果的情况下应用贝叶斯方法,例如在处理系统误差,反卷积问题以及在某些情况下必须消除有害参数时,但我们避免了不正确的先验密度。在不存在似然函数的情况下,拟合优度和显着性测试基于标准的频率方法。
英文简介:
There is a large number of excellent statistic books. Nevertheless, we think that it is justified to complement them by another textbook with the focus on modern applications in nuclear and particle physics. To this end we have included a large number of related examples and figures in the text. We emphasize less the mathematical foundations but appeal to the intuition of the reader.
Data analysis in modern experiments is unthinkable without simulation techniques. We discuss in some detail how to apply Monte Carlo simulation to parameter estimation, deconvolution, goodness-of-fit tests. We sketch also modern developments like artificial neural nets, bootstrap methods, boosted decision trees and support vector machines.
Likelihood is a central concept of statistical analysis and its foundation is the likelihood principle. We discuss this concept in more detail than usually done in textbooks and base the treatment of inference problems as far as possible on the likelihood function only, as is common in the majority of the nuclear and particle physics community. In this way point and interval estimation, error propagation, combining results, inference of discrete and continuous parameters are consistently treated. We apply Bayesian methods where the likelihood function is not sufficient to proceed to sensible results, for instance in handling systematic errors, deconvolution problems and in some cases when nuisance parameters have to be eliminated, but we avoid improper prior densities. Goodness-of-fit and significance tests, where no likelihood function exists, are based on standard frequentist methods.
- 书名
- Introduction to Statistics and Data Analysis for Physicists
- 译名
- 物理学家统计与数据分析简介
- 语言
- 英语
- 年份
- 2010
- 页数
- 412页
- 大小
- 6.14 MB
- 标签
- 统计学
- 下载
Introduction to Statistics and Data Analysis for Physicists.pdf
- 密码
- 65536
最后更新:2025-04-12 23:58:10
←Combinatorial Optimization: Exact and Approximate Algorithms