Foundations of Machine Learning, Second Edition

Foundations of Machine Learning, Second Edition

简介:

本书是对机器学习的一般介绍,可以作为研究生的教科书和研究人员的参考。它涵盖了机器学习中的基本现代主题,同时提供了算法讨论和论证所需的理论基础和概念工具。它还描述了这些算法应用的几个关键方面。作者旨在提出新颖的理论工具和概念,同时为相对高级的主题提供简洁的证明。

机器学习的基础在其专注于算法的分析和理论方面是独一无二的。前四章为下文奠定了理论基础; 后续各章大多是自成体系的。涵盖的主题包括大概正确 (PAC) 学习框架; 基于Rademacher复杂度和VC维度的泛化界限; 支持向量机 (svm); 内核方法; 提升; 在线学习; 多类分类; 排名; 回归; 算法稳定性; 降维;学习自动机和语言; 以及强化学习。每章都以一组练习结束。附录提供了额外的材料,包括简明的概率审查。

英文简介:

This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.

Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.

书名
Foundations of Machine Learning, Second Edition
译名
机器学习基础,第二版
语言
英语
年份
2018
页数
505页
大小
5.94 MB
标签
  • 机器学习
  • 下载
    pdf iconFoundations of Machine Learning, Second Edition.pdf
    密码
    65536

    最后更新:2025-04-12 23:58:08

    ←Linear Algebra And Analysis

    →Cracking Codes with Python