Essays on the Theory of Numbers

Essays on the Theory of Numbers

简介:

本卷包含了著名的德国数学家J关于数字系统逻辑基础的两篇最重要的论文。W。R。Dedekind.

第一个介绍了dedekin的无理数理论-dedekin切割思想-也许是19世纪创建的几种此类理论中最著名的,这些理论为无理数赋予了精确的含义,自希腊时代以来一直在直观的基础上使用。本文为无理数提供了纯算术和完全严格的基础,从而为分析中的连续性提供了严格的含义。第二篇文章试图为超限数和自然数的性质提供逻辑基础。它研究了自然数的概念,有限和超限 (无限) 整数之间的区别以及称为数学或完全归纳的证明类型的逻辑有效性。

这些文章的内容属于数学的基础,将受到那些准备研究我们数字系统元素的微妙含义的人的欢迎。作为一位重要数学家的主要著作,这本书值得在每一位实践数学家、每一位数学教师和历史学家的个人图书馆中占有一席之地。"Vooster" V.授权翻译.贝曼.

英文简介:

This volume contains the two most important essays on the logical foundations of the number system by the famous German mathematician J. W. R. Dedekind.

The first presents Dedekind's theory of the irrational number-the Dedekind cut idea-perhaps the most famous of several such theories created in the 19th century to give a precise meaning to irrational numbers, which had been used on an intuitive basis since Greek times. This paper provided a purely arithmetic and perfectly rigorous foundation for the irrational numbers and thereby a rigorous meaning of continuity in analysis.

The second essay is an attempt to give a logical basis for transfinite numbers and properties of the natural numbers. It examines the notion of natural numbers, the distinction between finite and transfinite (infinite) whole numbers, and the logical validity of the type of proof called mathematical or complete induction.

The contents of these essays belong to the foundations of mathematics and will be welcomed by those who are prepared to look into the somewhat subtle meanings of the elements of our number system. As a major work of an important mathematician, the book deserves a place in the personal library of every practicing mathematician and every teacher and historian of mathematics. Authorized translations by "Vooster " V. Beman.

书名
Essays on the Theory of Numbers
译名
数论论文集
语言
英语
年份
2007
页数
78页
大小
457.19 kB
标签
  • 数论
  • 数学
  • 下载
    pdf iconEssays on the Theory of Numbers.pdf
    密码
    65536

    最后更新:2025-04-12 23:58:07

    ←Analytic Number Theory: A Tribute to Gauss and Dirichlet

    →Operational Amplifiers and Linear Integrated Circuits: Theory and Application