Gaussian Processes for Machine Learning

简介:
高斯过程 (GPs) 提供了一种在内核机器中学习的原则,实用,概率的方法。在过去的十年中,GPs在机器学习领域受到了越来越多的关注,本书为机器学习中GPs的理论和实践方面提供了长期需要的系统和统一的处理。治疗是全面和独立的,针对研究人员和学生在机器学习和应用统计。
本书涉及回归和分类的监督学习问题,并包括详细的算法。提出了各种各样的协方差 (核) 函数,并讨论了它们的性质。这本书包含说明性的例子和练习,代码和数据集在网络上可用。附录提供了数学背景和对高斯马尔可夫过程的讨论。
英文简介:
Gaussian Processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed.
The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
- 书名
- Gaussian Processes for Machine Learning
- 译名
- 机器学习的高斯过程
- 语言
- 英语
- 年份
- 2006
- 页数
- 266页
- 大小
- 3.86 MB
- 标签
- 机器学习
- 下载
Gaussian Processes for Machine Learning.pdf
- 密码
- 65536
最后更新:2025-04-12 23:58:07