Neural Networks

简介:
从对神经网络在科学数据分析中的作用的介绍性讨论开始,本书为基本神经网络概念提供了坚实的基础。
系统介绍神经网络,生物学基础; 重要的网络类和学习算法; 监督模型 (感知器,adalines,多层感知器),支持向量机,回声状态网络,非监督网络 (竞争,Kohonen,Hebb),循环网络 (Hopfield,CTRNNs-连续时间递归神经网络),尖峰神经网络,尖峰时间相关可塑性,应用。
英文简介:
Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts.
Systematic introduction to neural networks, biological foundations; important network classes and learning algorithms; supervised models (perceptrons, adalines, multi-layer perceptrons), support-vector machines, echo-state networks, non-supervised networks (competitive, Kohonen, Hebb), recurrent networks (Hopfield, CTRNNs - continuous-time recurrent neural networks), spiking neural networks, spike-time dependent plasticity, applications.
- 书名
- Neural Networks
- 译名
- 神经网络
- 语言
- 英语
- 年份
- 1995
- 页数
- 111页
- 大小
- 8.69 MB
- 下载
Neural Networks.pdf
- 密码
- 65536
最后更新:2025-04-12 23:58:06
←Convex Optimization for Machine Learning
→Metalearning: Applications to Automated Machine Learning and Data Mining