Neural Networks

Neural Networks

简介:

从对神经网络在科学数据分析中的作用的介绍性讨论开始,本书为基本神经网络概念提供了坚实的基础。

系统介绍神经网络,生物学基础; 重要的网络类和学习算法; 监督模型 (感知器,adalines,多层感知器),支持向量机,回声状态网络,非监督网络 (竞争,Kohonen,Hebb),循环网络 (Hopfield,CTRNNs-连续时间递归神经网络),尖峰神经网络,尖峰时间相关可塑性,应用。

英文简介:

Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts.

Systematic introduction to neural networks, biological foundations; important network classes and learning algorithms; supervised models (perceptrons, adalines, multi-layer perceptrons), support-vector machines, echo-state networks, non-supervised networks (competitive, Kohonen, Hebb), recurrent networks (Hopfield, CTRNNs - continuous-time recurrent neural networks), spiking neural networks, spike-time dependent plasticity, applications.

书名
Neural Networks
译名
神经网络
语言
英语
年份
1995
页数
111页
大小
8.69 MB
下载
pdf iconNeural Networks.pdf
密码
65536

最后更新:2025-04-12 23:58:06

←Convex Optimization for Machine Learning

→Metalearning: Applications to Automated Machine Learning and Data Mining