Computability Theory: Introduction to Recursion Theory

Computability Theory: Introduction to Recursion Theory

简介:

可计算性理论起源于哥德尔,丘奇,图灵,克莱恩和20世纪30年代的开创性工作。该理论包括广泛的主题,例如还原性理论及其度结构,可计算的可枚举集及其自同构以及子递归层次结构分类。可计算性理论的最新工作集中在图灵可定义性上,并有望产生深远的数学,科学和哲学后果。这些文本提供了对当代可计算性理论,技术和结果的简洁,全面和权威的介绍。可计算性理论的基本概念和技术置于其历史,哲学和逻辑背景中。这些文本包括可计算性第一门课程的标准材料,以及对学位结构,强迫,优先方法和确定性的更高级的研究。他们还探索了数学和科学的各种可计算性应用。这些都是宝贵的文本,参考文献,并指导该领域当前研究的方向。在其他任何地方,你都不会找到这个美丽而基本的主题的技术和结果,以这种平易近人的方式活着。

英文简介:

Computability Theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. This theory includes a wide spectrum of topics, such as the theory of reducibilities and their degree structures, computably enumerable sets and their automorphisms, and subrecursive hierarchy classifications.

Recent work in computability theory has focused on Turing definability and promises to have far-reaching mathematical, scientific, and philosophical consequences.

These texts provide concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context.

The texts include both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. They also explore a variety of computability applications to mathematics and science.

These are invaluable texts, references, and guides to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way.

书名
Computability Theory: Introduction to Recursion Theory
译名
可计算性理论:递归理论简介
语言
英语
年份
2015
页数
126页
大小
795.38 kB
下载
pdf iconComputability Theory: Introduction to Recursion Theory.pdf
密码
65536

最后更新:2025-04-12 23:58:02

←Classical Algebraic Geometry: A Modern View

→Introduction to Mathematical Logic