Artificial Intelligence for Big Data

简介:
在这个大数据时代,公司拥有的消费者数据比以往任何时候都要多,远远超过了当前技术所希望的。然而,人工智能通过超越人类的限制来分析数据,从而缩小了差距。在本书的帮助下,您将学习使用机器学习算法,如k-means,SVM,RBF和回归来执行高级数据分析。您将了解机器和深度学习技术的当前状态,以研究遗传和神经模糊算法。此外,您将探索如何开发人工智能算法来从数据中学习,为什么它们是必要的,以及它们如何帮助解决现实世界的问题。
使用Deeplearning4j实现AI技术以构建智能应用程序使用Spark MLlib执行大数据分析以获得高质量的见解使用神经网络、NLP和强化学习创建自学习系统
本书适用于数据科学家,大数据专业人士或具有大数据基础知识并希望精通大数据人工智能技术的新手。数学方面的一些能力是基本线性代数和微积分领域的一个额外优势。
英文简介:
In this age of big data, companies have larger amount of consumer data than ever before, far more than what the current technologies can ever hope to keep up with. However, artificial intelligence closes the gap by moving past human limitations in order to analyze data.
With the help of this book, you will learn to use machine learning algorithms such as k-means, SVM, RBF, and regression to perform advanced data analysis. You will understand the current status of machine and deep learning techniques to work on genetic and neuro-fuzzy algorithms. In addition, you will explore how to develop artificial intelligence algorithms to learn from data, why they are necessary, and how they can help solve real-world problems.
Implement AI techniques to build smart applications using Deeplearning4jPerform big data analytics to derive quality insights using Spark MLlibCreate self-learning systems using neural networks, NLP, and reinforcement learning
This book is for data scientists, big data professionals, or novices who have basic knowledge of big data and wish to get proficiency in artificial intelligence techniques for big data. Some competence in mathematics is an added advantage in the field of elementary linear algebra and calculus.
- 书名
- Artificial Intelligence for Big Data
- 译名
- 大数据人工智能
- 语言
- 英语
- 年份
- 2018
- 页数
- 372页
- 大小
- 24.29 MB
- 标签
- 人工智能
- 大数据
- 下载
Artificial Intelligence for Big Data.pdf
- 密码
- 65536
最后更新:2025-04-12 23:58:01