Engineering Agile Big-Data Systems

简介:
为了有效,数据密集型系统需要广泛的持续定制,以反映不断变化的用户需求、组织政策以及它们所拥有的数据的结构和解释。手动定制是昂贵、耗时且容易出错的。在大型复杂系统中,数据的价值可能会导致在将任何新功能添加到现有设计之前必须进行详尽的测试。在大多数情况下,需求、策略和数据的精确细节将在系统的生命周期内改变,迫使在昂贵的修改和低效设计的持续操作之间做出选择。本书概述了在软件和数据工程中处理这些问题的方法,描述了在整个产品生命周期中调整这些过程的方法。它讨论了可用于实现这些目标的工具,并在许多案例研究中展示了如何使用这些工具和方法来改善各种学术和商业系统。
英文简介:
To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.
This book outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems.
- 书名
- Engineering Agile Big-Data Systems
- 译名
- 构建敏捷大数据系统
- 语言
- 英语
- 年份
- 2018
- 页数
- 435页
- 大小
- 92.28 MB
- 标签
- 大数据
- 下载
Engineering Agile Big-Data Systems.pdf
- 密码
- 65536
最后更新:2025-04-12 23:58:01
←Simply Logical: Intelligent Reasoning by Example
→Big Data in Context: Legal, Social and Technological Insights