Machine Learning for Data Streams: Practical Examples in MOA (Massive Online Analysis)

Machine Learning for Data Streams: Practical Examples in MOA (Massive Online Analysis)

简介:

如今,许多信息源 -- 包括传感器网络、金融市场、社交网络和医疗监控 -- 都是所谓的数据流,它们以高速顺序到达。分析必须实时进行,具有部分数据,并且没有存储整个数据集的能力。

本书介绍了数据流挖掘和实时分析中使用的算法和技术。本书采用动手操作的方法,使用MOA (大规模在线分析) 演示了这些技术,MOA是一种流行的,免费提供的开源软件框架,允许读者在阅读解释后尝试这些技术。本书首先简要介绍了该主题,涵盖了大数据挖掘,挖掘数据流的基本方法以及MOA的简单示例。接下来将进行更详细的讨论,其中包括有关草图绘制技术,更改,分类,集成方法,回归,聚类和频繁模式挖掘的章节。

英文简介:

Today many information sources - including sensor networks, financial markets, social networks, and healthcare monitoring - are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set.

This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining.

书名
Machine Learning for Data Streams: Practical Examples in MOA (Massive Online Analysis)
译名
数据流机器学习:MOA(大规模在线分析)中的实际示例
语言
英语
年份
2018
页数
287页
大小
32.80 MB
标签
  • 机器学习
  • 下载
    pdf iconMachine Learning for Data Streams: Practical Examples in MOA (Massive Online Analysis).pdf
    密码
    65536

    最后更新:2025-04-12 23:58:01

    ←Hadoop Succinctly

    →Learning Processing: A Beginner's Guide to Programming Images, Animation, and Interaction