A Brief Introduction to Machine Learning for Engineers

简介:
本书旨在介绍机器学习中的关键概念,算法和理论框架,包括监督和无监督学习,统计学习理论,概率图形模型和近似推理。预期的读者包括具有概率和线性代数背景的电气工程师。该处理基于第一原理,并根据明确定义的类别组织主要思想,例如判别和生成模型,频率和贝叶斯方法,精确和近似推理,有向和无向模型以及凸和非凸优化。本文提供了简单且可重复的数值示例,提供了对关键动机和结论的见解。数学框架使用信息理论度量作为统一工具。这本书不是提供每个特定类别中现有的无数解决方案的详尽细节,读者被称为教科书和论文,而是作为工程师进入机器学习文献的切入点。
英文简介:
This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first principles, while also exposing the reader to more advanced topics with extensive pointers to the literature, within a unified notation and mathematical framework. The material is organized according to clearly defined categories, such as discriminative and generative models, frequentist and Bayesian approaches, exact and approximate inference, as well as directed and undirected models. This monograph is meant as an entry point for researchers with an engineering background in probability and linear algebra.
- 书名
- A Brief Introduction to Machine Learning for Engineers
- 译名
- 工程师机器学习简介
- 语言
- 英语
- 年份
- 2018
- 页数
- 237页
- 大小
- 2.13 MB
- 标签
- 机器学习
- 下载
A Brief Introduction to Machine Learning for Engineers.pdf
- 密码
- 65536
最后更新:2025-04-12 23:57:47
←Linear Algebra for Computer Vision, Robotics, and Machine Learning