Refining the Concept of Scientific Inference When Working with Big Data

简介:
在过去的十年中,利用大数据实现科学发现的概念引起了私营和公共部门的极大兴奋和投资,并且期望不断增长。
使用大数据分析来识别隐藏在从未合并的大量数据中的复杂模式,可以加快科学发现的速度,并导致有益技术和产品的开发。然而,从如此庞大、复杂的数据集中产生可操作的科学知识需要产生可靠推论的统计模型 (NRC,2013)。如果不仔细考虑可用数据和所应用的统计模型的适用性,对大数据的分析可能会导致误导性的相关性和错误的发现,如果结果不可重复,这可能会破坏对科学研究的信心。在2016年6月,美国国家科学院、工程院和医学院召开了一次研讨会,研究在处理大数据时可靠地进行科学推理的关键挑战和机遇。参与者探索了新的方法发展,这些方法具有重大的前景和未来的潜在研究计划领域。本出版物总结了研讨会的演讲和讨论。
英文简介:
The concept of utilizing big data to enable scientific discovery has generated tremendous excitement and investment from both private and public sectors over the past decade, and expectations continue to grow.
Using big data analytics to identify complex patterns hidden inside volumes of data that have never been combined could accelerate the rate of scientific discovery and lead to the development of beneficial technologies and products. However, producing actionable scientific knowledge from such large, complex data sets requires statistical models that produce reliable inferences (NRC, 2013).
Without careful consideration of the suitability of both available data and the statistical models applied, analysis of big data may result in misleading correlations and false discoveries, which can potentially undermine confidence in scientific research if the results are not reproducible.
In June 2016 the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine critical challenges and opportunities in performing scientific inference reliably when working with big data. Participants explored new methodologic developments that hold significant promise and potential research program areas for the future. This publication summarizes the presentations and discussions from the workshop.
- 书名
- Refining the Concept of Scientific Inference When Working with Big Data
- 译名
- 处理大数据时完善科学推理的概念
- 语言
- 英语
- 年份
- 2017
- 页数
- 115页
- 大小
- 3.14 MB
- 标签
- 大数据
- 下载
Refining the Concept of Scientific Inference When Working with Big Data.pdf
- 密码
- 65536
最后更新:2025-04-12 23:57:46