Manifold Learning: Model Reduction in Engineering

Manifold Learning: Model Reduction in Engineering

简介:

目的是通过使用以下工具来更好地理解和实施降阶模型: 基于物理的模型,这些模型的合成数据预测,实验数据和深度学习算法。本书通过学习线性或非线性潜在空间,对应用于基于模型的工程和数字缠绕的模型降阶关键方法进行了调查。

英文简介:

The aim is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms. The book involves a survey of key methods of model order reduction applied to model-based engineering and digital twining, by learning linear or nonlinear latent spaces.

书名
Manifold Learning: Model Reduction in Engineering
译名
流形学习:工程中的模型简化
语言
英语
年份
2024
页数
114页
大小
3.64 MB
下载
pdf iconManifold Learning: Model Reduction in Engineering.pdf
密码
65536

最后更新:2025-04-12 23:57:44

←Hypergraph Computation

→Efficient R Programming: A Practical Guide to Smarter Programming