Statistical Foundations of Actuarial Learning and its Applications

简介:
这本开放存取书讨论了保险问题的统计建模,该过程包括数据收集,数据分析和统计模型构建,以预测未来可能发生的保险事件。它介绍了这些基本统计概念背后的数学基础,以及它们如何应用于日常精算实践。为从业者提供有关如何将机器学习方法应用于现实世界数据集的详细指导,以及如何在不忽视这些方法所基于的数学假设的情况下解释结果,本书可以作为精算教育课程的现代基础。
英文简介:
This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice.
Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.
- 书名
- Statistical Foundations of Actuarial Learning and its Applications
- 译名
- 精算学习的统计基础及其应用
- 语言
- 英语
- 年份
- 2009
- 页数
- 611页
- 大小
- 24.03 MB
- 下载
Statistical Foundations of Actuarial Learning and its Applications.pdf
- 密码
- 65536
最后更新:2025-04-12 23:57:43
←Linear Regression Using R: An Introduction to Data Modeling