Nonparametric and Semiparametric Models

简介:
非参数平滑的概念是统计学中的中心思想,旨在同时估计和建模基础结构。本书将高维对象视为密度函数和回归。半参数建模技术通过引入部分参数组件来折衷两个目标,即统计程序的灵活性和简单性。这些组件允许匹配结构条件,例如某些变量中的线性,并且可以用于对离散变量的影响进行建模。
本专着的目的是介绍平滑的统计和数学原理,重点是适用技术。必要的数学处理很容易理解,并给出了各种各样的交互式平滑示例。
本书自然分为两部分: 非参数模型 (直方图,核密度估计,非参数回归) 和半参数模型 (广义回归,单指数模型,广义部分线性模型,加性和广义加性模型)。第一部分适用于数学,统计学,计量经济学或生物计量学专业的本科生,而第二部分则适用于硕士生和博士生或研究人员。
该材料易于完成,因为文本的电子书字符在学习 (和教学) 强度方面提供了最大的灵活性。
英文简介:
The concept of nonparametric smoothing is a central idea in statistics that aims to simultaneously estimate and modes the underlying structure. The book considers high dimensional objects, as density functions and regression.
The semiparametric modeling technique compromises the two aims, flexibility and simplicity of statistical procedures, by introducing partial parametric components. These components allow to match structural conditions like e.g. linearity in some variables and may be used to model the influence of discrete variables.
The aim of this monograph is to present the statistical and mathematical principles of smoothing with a focus on applicable techniques. The necessary mathematical treatment is easily understandable and a wide variety of interactive smoothing examples are given.
The book does naturally split into two parts: Nonparametric models (histogram, kernel density estimation, nonparametric regression) and semiparametric models (generalized regression, single index models, generalized partial linear models, additive and generalized additive models). The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers.
The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
- 书名
- Nonparametric and Semiparametric Models
- 译名
- 非参数和半参数模型
- 语言
- 英语
- 年份
- 2006
- 页数
- 324页
- 大小
- 5.63 MB
- 下载
Nonparametric and Semiparametric Models.pdf
- 密码
- 65536
最后更新:2025-04-12 23:57:42