Computer Vision Metrics: Survey, Taxonomy, and Analysis

Computer Vision Metrics: Survey, Taxonomy, and Analysis

简介:

计算机视觉指标提供了对100多个当前和历史特征描述和机器视觉方法的广泛调查和分析,并为本地,区域和全球特征提供了详细的分类。本书提供了必要的背景,以开发关于为什么兴趣点检测器和特征描述符实际工作的直觉,它们是如何设计的,以及关于调整方法以实现特定应用的鲁棒性和不变性目标的观察。

调查范围大于深度,提供了540多个参考资料以进行更深入的研究。分类法包括搜索方法,光谱分量,描述符表示,形状,距离函数,准确性,效率,鲁棒性和不变性属性等。而不是提供 “如何” 的源代码的例子和快捷方式,这本书提供了一个对立的讨论,许多精细的opencv社区源代码资源可供实践从业者。

英文简介:

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications.

The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing 'how-to' source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.

书名
Computer Vision Metrics: Survey, Taxonomy, and Analysis
译名
计算机视觉指标:调查、分类和分析
语言
英语
年份
2014
页数
498页
大小
15.87 MB
标签
  • 计算机视觉
  • 计算机图形学
  • 下载
    pdf iconComputer Vision Metrics: Survey, Taxonomy, and Analysis.pdf
    密码
    65536

    最后更新:2025-04-12 23:57:39

    ←A Tale of Two Fractals

    →Computer Vision: Models, Learning, and Inference