Global Optimization Algorithms: Theory and Application

Global Optimization Algorithms: Theory and Application

简介:

本书致力于全局优化算法,这是为给定问题找到最优解的方法。通过讨论进化算法,遗传算法,遗传编程,学习分类器系统,进化策略,差分进化,粒子群优化和蚁群优化,特别关注进化计算。

它还详细阐述了其他元启发式方法,例如模拟退火,极值优化,禁忌搜索和随机优化。这本书不是传统意义上的书: 由于频繁的更新和变化,它并不是真正用于顺序阅读,而是更多地作为某种材料收集,百科全书或参考书,您可以在其中查找内容,找到正确的内容,并提供基础知识。

英文简介:

This book is devoted to global optimization algorithms, which are methods to find optimal solutions for given problems. It especially focuses on Evolutionary Computation by discussing evolutionary algorithms, genetic algorithms, Genetic Programming, Learning Classifier Systems, Evolution Strategy, Differential Evolution, Particle Swarm Optimization, and Ant Colony Optimization.

It also elaborates on other metaheuristics like Simulated Annealing, Extremal Optimization, Tabu Search, and Random Optimization. The book is no book in the conventional sense: Because of frequent updates and changes, it is not really intended for sequential reading but more as some sort of material collection, encyclopedia, or reference work where you can look up stuff, find the correct context, and are provided with fundamentals.

书名
Global Optimization Algorithms: Theory and Application
译名
全局优化算法:理论与应用
语言
英语
年份
2009
页数
820页
大小
12.61 MB
标签
  • 算法
  • 下载
    pdf iconGlobal Optimization Algorithms: Theory and Application.pdf
    密码
    65536

    最后更新:2025-04-12 23:57:35

    ←MySQL Notes for Professionals

    →Algorithms for Decision Making