Introduction to Online Convex Optimization

简介:
这本书将优化描述为一个过程。在许多实际应用中,环境是如此复杂,以至于布局一个全面的理论模型并使用经典算法理论和/或数学优化是不可行的。本书介绍了一种强大的机器学习方法,其中包含数学优化,博弈论和学习理论的元素: 一种从经验中学习的优化方法,因为观察到问题的更多方面。这种将优化视为一个过程的观点在建模和系统方面取得了一些惊人的成功,这些成功已成为我们日常生活的一部分。本书基于作者在普林斯顿大学教授的 “理论机器学习” 课程,是一本广泛使用的研究生水平教材。
英文简介:
This book portrays optimization as a process. In many practical applications, the environment is so complex that it is not feasible to lay out a comprehensive theoretical model and use classical algorithmic theory and/or mathematical optimization.
This book presents a robust machine learning approach that contains elements of mathematical optimization, game theory, and learning theory: an optimization method that learns from experience as more aspects of the problem are observed. This view of optimization as a process has led to some spectacular successes in modeling and systems that have become part of our daily lives.
Based on the "Theoretical Machine Learning" course taught by the author at Princeton University, This book is a widely used graduate level textbook.
- 书名
- Introduction to Online Convex Optimization
- 译名
- 在线凸优化简介
- 语言
- 英语
- 年份
- 2019
- 页数
- 260页
- 大小
- 5.14 MB
- 下载
Introduction to Online Convex Optimization.pdf
- 密码
- 65536
最后更新:2025-04-12 23:57:33