Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers

Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers

简介:

机器学习技术为传统方法提供了具有成本效益的替代方案,用于提取信息和数据之间的潜在关系,并通过处理现有信息来训练模型来预测未来事件。本书探讨了机器学习的主要主题,包括知识发现,分类,遗传算法,神经网络,内核方法和生物启发技术。

英文简介:

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. This book explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques.

书名
Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers
译名
高效学习机器:面向工程师和系统设计师的理论、概念和应用
语言
英语
年份
2020
页数
263页
大小
7.99 MB
标签
  • 机器学习
  • 下载
    pdf iconEfficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers.pdf
    密码
    65536

    最后更新:2025-04-12 23:55:15

    ←Deep Learning by Ian Goodfellow Yoshua Bengio Aaron Courville

    →Machine Learning from Scratch