Deep Learning for Coders with Fastai and PyTorch: AI Applications Without a PhD

简介:
深度学习通常被视为数学博士和大型科技公司的专属领域。但正如本实践指南所展示的那样,熟悉Python的程序员可以在几乎没有数学背景、少量数据和最少代码的情况下,在深度学习方面取得令人印象深刻的结果。怎么做?fastai是第一个为最常用的深度学习应用程序提供一致接口的库。作者Jeremy Howard和Sylvain Gugger是fastai的创建者,他们向您展示了如何使用fastai和PyTorch在各种任务上训练模型。您还将逐步深入研究深度学习理论,以全面了解幕后算法。
训练计算机视觉、自然语言处理、表格数据和协同过滤中的模型学习在实践中最重要的最新深度学习技术通过了解深度学习模型的工作原理,提高准确性、速度和可靠性了解如何将模型转换为web应用程序从头开始实施深度学习算法考虑你的工作的伦理影响从PyTorch联合创始人Soumith chytala的前言中获得洞察力。
英文简介:
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications.
Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You'll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes.
Train models in computer vision, natural language processing, tabular data, and collaborative filteringLearn the latest deep learning techniques that matter most in practiceImprove accuracy, speed, and reliability by understanding how deep learning models workDiscover how to turn your models into web applicationsImplement deep learning algorithms from scratchConsider the ethical implications of your workGain insight from the foreword by PyTorch cofounder, Soumith Chintala.
- 书名
- Deep Learning for Coders with Fastai and PyTorch: AI Applications Without a PhD
- 译名
- 使用 Fastai 和 PyTorch 进行深度学习:无需博士学位即可实现 AI 应用
- 语言
- 英语
- 年份
- 2020
- 页数
- 622页
- 大小
- 32.82 MB
- 标签
- 深度学习
- 机器学习
- 下载
Deep Learning for Coders with Fastai and PyTorch: AI Applications Without a PhD.pdf
- 密码
- 65536
最后更新:2025-04-12 23:55:13
←Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide
→Deep Learning by Ian Goodfellow Yoshua Bengio Aaron Courville