An Introduction to Machine Learning Interpretability

An Introduction to Machine Learning Interpretability

简介:

理解和信任模型及其结果是优秀科学的标志。了解如何将其应用于机器学习,包括公平性,问责制,透明度和可解释的AI。

英文简介:

Understanding and trusting models and their results is a hallmark of good science. Get an applied perspective on how this applies to machine learning, including fairness, accountability, transparency, and explainable AI.

书名
An Introduction to Machine Learning Interpretability
译名
机器学习可解释性简介
语言
英语
年份
2019
页数
62页
大小
14.29 MB
标签
  • 机器学习
  • 下载
    pdf iconAn Introduction to Machine Learning Interpretability.pdf
    密码
    65536

    最后更新:2025-04-12 23:55:11

    ←Financial Machine Learning

    →Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide