An Introduction to Machine Learning Interpretability

简介:
理解和信任模型及其结果是优秀科学的标志。了解如何将其应用于机器学习,包括公平性,问责制,透明度和可解释的AI。
英文简介:
Understanding and trusting models and their results is a hallmark of good science. Get an applied perspective on how this applies to machine learning, including fairness, accountability, transparency, and explainable AI.
- 书名
- An Introduction to Machine Learning Interpretability
- 译名
- 机器学习可解释性简介
- 语言
- 英语
- 年份
- 2019
- 页数
- 62页
- 大小
- 14.29 MB
- 标签
- 机器学习
- 下载
An Introduction to Machine Learning Interpretability.pdf
- 密码
- 65536
最后更新:2025-04-12 23:55:11
→Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide