Interpretable Machine Learning, 2nd Edition: A Guide for Making Black Box Models Explainable

Interpretable Machine Learning, 2nd Edition: A Guide for Making Black Box Models Explainable

简介:

本书涵盖了一系列可解释性方法,从固有的可解释模型到可以使任何模型可解释的方法,例如SHAP,LIME和排列特征重要性。

英文简介:

TThis book covers a range of interpretability methods, from inherently interpretable models to methods that can make any model interpretable, such as SHAP, LIME and permutation feature importance.

书名
Interpretable Machine Learning, 2nd Edition: A Guide for Making Black Box Models Explainable
译名
可解释机器学习,第二版:使黑盒模型可解释的指南
语言
英语
年份
2019
页数
251页
大小
3.45 MB
标签
  • 机器学习
  • 下载
    pdf iconInterpretable Machine Learning, 2nd Edition: A Guide for Making Black Box Models Explainable.pdf
    密码
    65536

    最后更新:2025-04-12 23:55:06

    ←Machine Learning Engineering

    →Lifelong Machine Learning