A Course in Algebraic Number Theory

A Course in Algebraic Number Theory

简介:

这个研究生水平的文本提供了一个学期的代数数论课程的覆盖范围。它探讨了Dedekind域中理想因式分解的一般理论以及数域情况。详细的计算说明了Kummer定理在扩展领域中提升素理想的用途。

作者为学生提供了足够的详细信息,以浏览Dirichlet单位定理的复杂证明以及元素和理想规范上的Minkowski界限。其他主题包括Galois扩展以及局部和全局领域中的素理想的因式分解,包括Artin-Whaples近似定理和Hensel引理。本文以三个有用的附录作为结尾。面向数学专业,本课程需要研究生水平的代数背景,并熟悉积分扩展和本地化。

英文简介:

This graduate-level text provides coverage for a one-semester course in Algebraic Number Theory. It explores the general theory of factorization of ideals in Dedekind domains as well as the number field case. Detailed calculations illustrate the use of Kummer's theorem on lifting of prime ideals in extension fields.

The author provides sufficient details for students to navigate the intricate proofs of the Dirichlet unit theorem and the Minkowski bounds on element and ideal norms. Additional topics include the factorization of prime ideals in Galois extensions and local as well as global fields, including the Artin-Whaples approximation theorem and Hensel's lemma. The text concludes with three helpful appendixes. Geared toward mathematics majors, this course requires a background in graduate-level algebra and a familiarity with integral extensions and localization.

书名
A Course in Algebraic Number Theory
译名
代数数论课程
语言
英语
页数
108页
大小
3.44 MB
标签
  • 数论
  • 代数
  • 数学
  • 下载
    pdf iconA Course in Algebraic Number Theory.pdf
    密码
    65536

    最后更新:2025-04-12 23:54:40

    ←Magic Squares and Cubes

    →Programming Persistent Memory: A Comprehensive Guide for Developers