Combinatorial Geometry with Application to Field Theory

Combinatorial Geometry with Application to Field Theory

简介:

受组合原理的启发,尤其是CC猜想,即任何数学科学都可以从组合中重构或通过组合来进行,本书对数学和场论进行了综述。

本书涵盖的主题包括组合学的基础,代数组合学,具有Smarandache几何的拓扑,组合微分几何,组合黎曼子流形,李多群,组合主纤维束,引力场,量子场和规范场及其组合概括,还讨论了认识论中的基本问题。几乎所有几何形状,例如伪流形几何,Finsler几何,组合Finsler几何,Riemann几何,组合黎曼几何,Weyl几何,Kahler几何都是Smarandache几何的特殊情况。所有这些材料对于具有枚举,拓扑,Smarandache几何,黎曼几何,引力或量子场,多体系统和全球量化经济的拓扑图理论的研究人员或研究生都很有价值。

英文简介:

Motivated by the combinatorial principle, particularly, the CC conjecture, i.e., any mathematical science can be reconstructed from or made by combinatorialization, this book surveys mathematics and field theory.

Topics covered in this book include fundamental of combinatorics, algebraic combinatorics, topology with Smarandache geometry, combinatorial differential geometry, combinatorial Riemannian submanifolds, Lie multi-groups, combinatorial principal fiber bundles, gravitational field, quantum fields and gauge field with their combinatorial generalization, also with discussions on fundamental questions in epistemology.

Nearly all geometries, such as pseudo-manifold geometries, Finsler geometry, combinatorial Finsler geometries, Riemann geometry, combinatorial Riemannian geometries, Weyl geometry, Kahler geometry are particular cases of Smarandache geometries.

All of these materials are valuable for researchers or graduate students in topological graph theory with enumeration, topology, Smarandache geometry, Riemannian geometry, gravitational or quantum fields, many-body system and globally quantifying economy.

书名
Combinatorial Geometry with Application to Field Theory
译名
组合几何及其在场论中的应用
语言
英语
年份
2011
页数
502页
大小
2.99 MB
标签
  • 几何
  • 数学
  • 下载
    pdf iconCombinatorial Geometry with Application to Field Theory.pdf
    密码
    65536

    最后更新:2025-04-12 23:54:39

    ←Finite-element Methods for Electromagnetics

    →Programming for Computations - MATLAB/Octave: A Gentle Introduction to Numerical Simulations with MATLAB/Octave