Variational Principles in Classical Mechanics

简介:
在17-18世纪提出了两种截然不同的古典力学哲学方法。牛顿开发了他的矢量公式,该公式使用与时间有关的运动微分方程来关联矢量观测值,例如力和动量变化率。Euler,Lagrange,Hamilton和Jacobi基于自然遵循最小作用原理的假设,开发了强大的替代变分公式。这些变化的公式现在在科学和工程中起着举足轻重的作用。本书介绍了变分原理及其在经典力学中的应用。比较了直观的牛顿矢量公式和更强大的变分公式的相对优点。各种各样的主题的应用说明了通过使用物理学中的变分原理所提供的知识之美,卓越的力量和广泛的范围。第二版增加了对适用于以下主题的变分原理的使用的讨论: 1) 受初始边界条件约束的系统2) 基于作用,拉格朗日,哈密顿量和运动方程的相关公式的层次结构涉及对称性3) 非保守系统。4) 变质量系统。5) 广义相对论。
英文简介:
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th – 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.
This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.
This second edition adds discussion of the use of variational principles applied to the following topics: 1) Systems subject to initial boundary conditions 2) The hierarchy of the related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries 3) Non-conservative systems. 4) Variable-mass systems. 5) The General Theory of Relativity.
- 书名
- Variational Principles in Classical Mechanics
- 译名
- 经典力学中的变分原理
- 语言
- 英语
- 年份
- 2018
- 页数
- 600页
- 大小
- 9.54 MB
- 下载
Variational Principles in Classical Mechanics.pdf
- 密码
- 65536
最后更新:2025-04-12 23:54:39