Deep Learning with PyTorch

简介:
每隔一天,我们就会听到利用深度学习的新方法: 改进的医学成像、准确的信用卡欺诈检测、长期天气预报等等。PyTorch将这些超能力交到你手中。对于任何了解Python数据工具 (如NumPy和scikit-learn) 的人来说,PyTorch可以在不牺牲高级功能的情况下简化深度学习。它非常适合构建快速模型,并且可以从笔记本电脑顺利扩展到企业。本书教你使用PyTorch创建深度学习和神经网络系统。这本实用的书让你立即从头开始构建肿瘤图像分类器。在介绍了基础知识之后,您将学习整个深度学习管道的最佳实践,随着您的PyTorch技能变得越来越复杂,处理高级项目。所有代码示例都可以在可下载的Jupyter笔记本中轻松浏览。
理解深度学习数据结构,如张量和神经网络PyTorch Tensor API的最佳实践,在Python中加载数据并可视化结果实现模块和损失函数利用来自PyTorch Hub的预训练模型有限输入网络的训练方法筛选不可靠的结果以诊断和修复神经网络中的问题通过增强数据、更好的模型架构和微调来改善结果
英文简介:
Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more.
PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise.
This book teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch.
After covering the basics, you'll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks.
Understanding deep learning data structures such as tensors and neural networksBest practices for the PyTorch Tensor API, loading data in Python, and visualizing resultsImplementing modules and loss functionsUtilizing pretrained models from PyTorch HubMethods for training networks with limited inputsSifting through unreliable results to diagnose and fix problems in your neural networkImprove your results with augmented data, better model architecture, and fine tuning
- 书名
- Deep Learning with PyTorch
- 译名
- 使用 PyTorch 进行深度学习
- 语言
- 英语
- 年份
- 2020
- 页数
- 522页
- 大小
- 44.74 MB
- 标签
- 深度学习
- 机器学习
- 下载
Deep Learning with PyTorch.pdf
- 密码
- 65536
最后更新:2025-04-12 23:54:38