Kalman and Bayesian Filters in Python

简介:
本书是卡尔曼和贝叶斯滤波器的介绍性文本。所有代码都是用Python编写的,本书本身是使用Juptyer Notebook编写的,以便您可以在浏览器中运行和修改代码。有什么更好的学习方法?这本书的重点是建立直觉和经验,而不是正式的证明。包括卡尔曼滤波器,扩展卡尔曼滤波器,无迹卡尔曼滤波器,粒子滤波器等。所有练习都包括解决方案。这本书教你如何解决这些过滤问题。它使用许多不同的算法,但它们都是基于贝叶斯概率。简单来说,贝叶斯概率根据过去的信息确定什么可能是真实的。这本书的动机来自于我对卡尔曼滤波的温和介绍的渴望。我是一名软件工程师,在航空电子领域工作了近二十年,所以我一直在使用卡尔曼滤波器,但我自己从来没有实现过。这本书是为业余爱好者,好奇,和工作的工程师,需要过滤或平滑数据。
英文简介:
This book is an introductory text for Kalman and Bayesian filters. All code is written in Python, and the book itself is written using Juptyer Notebook so that you can run and modify the code in your browser. What better way to learn?
The book focuses on building intuition and experience, not formal proofs. Includes Kalman filters, extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.
The book teaches you how to solve these sorts of filtering problems. It uses many different algorithms, but they are all based on Bayesian Probability. In simple terms Bayesian probability determines what is likely to be true based on past information.
The motivation for this book came out of my desire for a gentle introduction to Kalman filtering. I'm a software engineer that spent almost two decades in the avionics field, and so I have always been 'bumping elbows' with the Kalman filter, but never implemented one myself.
This book is for the hobbyist, the curious, and the working engineer that needs to filter or smooth data.
- 书名
- Kalman and Bayesian Filters in Python
- 译名
- Python 中的卡尔曼和贝叶斯滤波器
- 语言
- 英语
- 页数
- 263页
- 大小
- 3.89 MB
- 标签
- Bayesian Method
- 机器学习
- Python
- 下载
Kalman and Bayesian Filters in Python.pdf
- 密码
- 65536
最后更新:2025-04-12 23:54:38
←Computer Simulation Techniques - The Definitive Introduction
→Feedback Systems: An Introduction for Scientists and Engineers