Optimization Algorithms on Matrix Manifolds

Optimization Algorithms on Matrix Manifolds

简介:

科学和工程中的许多问题都可以表述为具有所谓流形结构的矩阵搜索空间上的优化问题。本书展示了如何利用此类问题的特殊结构来开发高效的数值算法。它仔细强调了算法的数值公式及其微分几何抽象-说明了良好的算法如何从微分几何,优化和数值分析的见解中平等地汲取。另外两个理论章节为读者提供了算法开发所必需的微分几何背景。在其他章节中,最速下降和共轭梯度等几种著名的优化方法被推广到抽象流形。本书以几何章节的材料为基础,提供了每种方法的通用开发。然后,它引导读者完成将这些几何公式化方法转化为具体数值算法的计算。作为示例给出的最新算法与现有的最佳算法相比,可以在数值线性代数中选择特征空间问题。

矩阵流形上的优化算法提供了在线性代数,信号处理,数据挖掘,计算机视觉和统计分析中具有广泛应用的技术。它可以作为研究生水平的教科书,并将对应用数学家,工程师和计算机科学家感兴趣。

处理在数学,数值和算法观点之间取得了适当的平衡。写作质量很高,可读性很强。这个话题非常及时,我和我的学生肯定会感兴趣。”-佛罗里达州立大学Kyle A. Gallivan

英文简介:

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra.

Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

The treatment strikes an appropriate balance between mathematical, numerical, and algorithmic points of view. The quality of the writing is quite high and very readable. The topic is very timely and is certainly of interest to myself and my students."--Kyle A. Gallivan, Florida State University

书名
Optimization Algorithms on Matrix Manifolds
译名
矩阵流形上的优化算法
语言
英语
年份
2007
页数
237页
大小
2.04 MB
标签
  • 算法
  • 下载
    pdf iconOptimization Algorithms on Matrix Manifolds.pdf
    密码
    65536

    最后更新:2025-04-12 23:54:37

    ←Methods and Models of Operations Research

    →PHP Notes for Professionals